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Abstract

Snow-cover information is important for a wide variety of scientific studies, water supply and management applications. The NASA Earth

Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) provides improved capabilities to observe snow cover

from space and has been successfully using a normalized difference snow index (NDSI), along with threshold tests, to provide global,

automated binary maps of snow cover. The NDSI is a spectral band ratio that takes advantage of the spectral differences of snow in short-wave

infrared and visible MODIS spectral bands to identify snow versus other features in a scene. This study has evaluated whether there is a

‘‘signal’’ in the NDSI that could be used to estimate the fraction of snow within a 500 mMODIS pixel and thereby enhance the use of the NDSI

approach in monitoring snow cover. Using Landsat 30-m observations as ‘‘ground truth,’’ the percentage of snow cover was calculated for 500-

m cells. Then a regression relationship between 500-m NDSI observations and fractional snow cover was developed over three different snow-

covered regions and tested over other areas. The overall results indicate that the relationship between fractional snow cover and NDSI is

reasonably robust when applied locally and over large areas like North America. The relationship offers advantages relative to other published

fractional snow cover algorithms developed for global-scale use with MODIS. This study indicates that the fraction of snow cover within a

MODIS pixel using this approach can be provided with a mean absolute error less than 0.1 over the range from 0.0 to 1.0 in fractional snow

cover.

D 2003 Elsevier Inc. All rights reserved.
Keywords: MODIS; Fractional snow cover; Remote sensing; EOS Terra; EOS aqua
1. Introduction

The distribution of snow in space and time is an important

parameter for a wide variety of reasons. Knowing the extent

of the snow is valuable information in that it provides insight

as to the amount of water to be expected from snowmelt

available for runoff and water supply. In addition, the snow

cover itself is a surface condition that affects radiation and

water balance determinations that are inputs to hydrological

cycle and climate studies (see, for examples, Cess et al.,

1991; Cohen, 1994; Cohen & Entekhabi, 2001; Douville &

Royer, 1996; Foster et al., 1996; Stieglitz, Ducharne, Koster,

& Suarez, 2001; Yang et al., 1999). Furthermore, the sub-

grid variability of snow within numerical models of hydro-

logical or atmospheric surface energy exchange processes
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calls for knowing the fractional snow cover and its distribu-

tion as accurately as possible (see, for examples, Liston,

1995, 1999; Liston, Pielke, & Greene, 1999; Roesch, Wild,

Gilgen, Ohmura, & Arugnell, 2001). Given the importance

of knowing the distribution of snow, there has been much

progress since 1966 when the first operational snowmapping

was done by NOAA, in utilizing spaceborne sensors that

provide daily, global observations to monitor the variability

in space and time in the extent of snow cover (Frei &

Robinson, 1998; Rango, Walker, & Goodison, 2000; Rob-

inson, Dewey, & Heim, 1993).

The intent and purpose of this study was to examine

whether estimates of fractional snow cover from the NASA

Earth Observing System (EOS) Moderate Resolution Imag-

ing Spectroradiometer (MODIS) could be improved by using

the variability in the Normalized Difference Snow Index

(NDSI) spectral band ratio to estimate the fraction of snow

cover being observed in each MODIS pixel and subsequent-

ly offer some increased information regarding the presence



V.V. Salomonson, I. Appel / Remote Sensing of Environment 89 (2004) 351–360352
of snow cover beyond that inherent with the basic MODIS

pixel dimensions. In other words, rather than simply saying a

MODIS pixel is either snow covered or not, there would be

an estimate made as to the fraction of snow in each MODIS

pixel based on the magnitude of the NDSI. This approach

was pursued to see how much improvement might be offered

by using the NDSI while retaining the computational sim-

plicity inherent in the use of a rationing algorithm for

automated processing of MODIS data to obtain daily, global

estimates of snow-cover distribution.
2. Background

The MODIS instrument is a multispectral instrument with

36 bands and nominal spatial resolution of 250 m in 2 bands,

500 m in 5 bands, and 1 km in 29 bands. The MODIS

instrument is operational on two EOS spacecraft. The Terra

mission was launched with a MODIS instrument on it in

December 1999 and observations provided from February

24, 2000, to the present. The Aqua mission was launched in

May of 2002 and observations provided from June 24, 2002

to the present. The characteristics and specifications of the

MODIS instrument are described by Barnes, Pagano, and

Salomonson (1998) and the recent, general status of the

instrument provided by Guenther, Xiong, Salomonson,

Barnes, and Young (2002).

Relative to similar sensors such as the Advanced Very

High Resolution Radiometer (AVHRR) that has been oper-

ational for many years on the NOAA Polar Operational

Environmental Satellite System (POESS) the MODIS sensor

offers some significant advantages. In the context of this

study, the MODIS provides observations at a nominal spatial

resolution of 500-m versus the 1.1-km spatial resolution of

the AVHRR and continuously available (spatially and tem-

porally), spectral band observations that span the visible and

short-wave infrared wavelengths useful for distinguishing

the extent of snow cover.

Hall, Riggs, and Salomonson (1995, Hall et al., 2002) and

Klein, Hall, and Riggs (1998) have used the spectral differ-

ences in snow versus non-snow-covered areas that can be

observed by the MODIS to develop an automated approach

to providing daily, global observations of snow cover. The

approach employs the NDSI that essentially takes advantage

of the fact that snow reflectance is high in the visible (0.5–

0.7 Am) wavelengths and has low reflectance in the short-

wave infrared (1–4 Am) wavelengths (Nolin & Liang, 2000)

to enable distinguishing snow from clouds and other non-

snow-covered conditions. The NDSI is defined as the dif-

ference of reflectances observed in a visible band such as

MODIS band 4 (0.555 Am) and a short-wave infrared band

such as MODIS band 6 (1.640 Am) divided by the sum of the

two reflectances:

NDSI ¼ ðb4� b6Þ=ðb4þ b6Þ: ð1Þ
The NDSI not only takes advantage of the spectral differ-

ences of snow versus non-snow-covered area and clouds, but

also like many ratio approaches, tends to reduce (but

certainly not totally eliminate) the influence of atmospheric

effects and viewing geometry. An approach, called ‘‘SNOW-

MAP,’’ is now being employed in an automated fashion to

routinely provide global, snow-cover products for use by the

hydrological science and water resource management com-

munities (Hall et al., 2002). These products provide a

determination that designates each MODIS pixel as either

snow covered or not covered by snow. SNOWMAP includes

the use of not only NDSI, but also other criteria to minimize

false snow detection associated with lakes, or beaches, and

adjustments for snow in forested areas versus non-forested

areas. All the criteria, etc. are found in the MODIS Snow

Products User Guide (http://modis-snow-ice.gsfc.nasa.gov/

sug.pdf). For areas larger than a MODIS pixel such as the

grid (e.g., 5� 5 km) of a numerical model utilizing MODIS

observations of snow cover, the fraction of snow cover in the

grid simply takes the percentage of snow-covered pixels as a

fraction of the total cloud-free, MODIS observations in the

grid.

There is a need to enhance the utility of the MODIS

snow-cover observations by providing information about

the fraction of snow cover within a MODIS pixel. This is

particularly true when trying to study snow processes in

more localized areas associated with small watersheds, for

example. There are several remote sensing approaches that

have been applied for estimating the fractional snow cover

within a sensor pixel (Nolin, Dozier, & Mertes, 1993;

Painter, Dozier, Roberts, Davis, & Green, 2003; Rosenthal

and Dozier, 1996; Vikhamer & Solberg, 2002). Recently

Kaufman, Kleidman, Hall, Martins, and Barton (2002) and

Barton, Hall, and Riggs (2001) have described some

approaches for estimating subpixel snow cover using

MODIS observations. The Kaufman approach is essentially

a variation of a ‘‘tie-point’’ algorithm using the 0.645-Am
band (band 1) and the 2.1-Am band (band 7) of the MODIS

instrument. The Barton method is a multivariate polyno-

mial regression approach using the NDSI and MODIS

observations.

While appreciating the strengths of other basic approaches

such as multiple endmember spectral mixture analysis (Paint-

er et al., 2003; Roberts et al., 1998) for getting better estimates

of fractional snow cover within a pixel, there are attendant

challenges and complexities of applying these or similar

approaches on a daily, automated, global basis. Therefore,

it was decided to examine whether the NDSI has enough of a

‘‘signal’’ to essentially extend the utility of the SNOWMAP

approach to obtaining subpixel estimates of snow cover,

retain the simplicity of the NDSI approach for doing auto-

mated, global mapping of snow cover, and offer advantages

relative to other comparable methods (e.g., the Kaufman

method and the Barton method) that nominally could be used

to provide automated, global mapping of fractional snow

cover.
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Table 1

Information about Landsat scenes used as ground truth in developing

statistical relationships between fractional snow cover and NDSI and

performing independent tests

Region Day Path Row Sun

elevation

Sun

azimuth

Alaska 05/12/01 065 017 46 162

Siberia 05/24/01 142 013 43 168

Labrador 11/07/00 11 020 15 168

Kuparuk 05/23/02 073 011 41 172

South America 12/08/01 232 084 58 077
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3. Methods

To develop a relationship between NDSI and fractional

snow cover within a MODIS 500-m pixel, it was necessary

to utilize a source of ground truth. After considering the

possibilities of utilizing aircraft and relatively high resolution

satellite data, it was decided that the Enhanced Landsat

Thematic Mapper-Plus (ETM+) observations would be read-

ily available, suitable and effective. Several Landsat scenes

covering a wide variety of snow-cover conditions were

selected for study and subpixel snow-fraction algorithm

development. These were: (a) a snow-covered region includ-

ing glaciers in Alaska; (b) a relatively flat, snow-covered

plains region in Labrador, Canada; (c) a taiga region in

Siberia, Russia (Fig. 1). The specific dates and locations of
Fig. 1. Locations of the Landsat scenes that were used to develop fractional

snow cover versus NDSI relationships. The box outlines the area covered

by Landsat scenes shown in Fig. 2. (a) Alaska; (b) Siberia, Russia; (c)

Labrador, Canada.
these scenes are listed in Table 1. These scenes shown in

Fig. 2 include diverse types of snow cover in different stages

of accumulation and melting along with a reasonable amount

of variety in attendant conditions of relief and land cover

with which to develop a fractional snow-cover algorithm.

In every Landsat scene used for the various regions

indicated above, each 30-m pixel was classified as snow or

non-snow using the current ‘‘SNOWMAP’’ approach to

identify snow-covered pixels versus those not covered by

snow (i.e., a binary classification). The Landsat ETM+ bands

(0.55-Am-band 2 and 1.64-Am band 5) corresponding to the

MODIS bands 4 and 6 were used to calculate NDSI values.

MODIS and Landsat images collected on the same day

with time separation of less than an hour were registered

(Fig. 3) to a 500-m grid in a UTM projection. In each grid, an

NDSI estimate based on MODIS observations of top-of-the-

atmosphere reflectance in bands 4 and 6 was provided. Bi-

linear interpolation of reflectances was used to provide an

NDSI value corresponding to a 500-m resolution grid cell

center. For each 500-m grid cell, the percentage of snow

cover was determined on the basis of the Landsat observa-

tions by counting the number of Landsat pixels covered by

snow versus the total number of Landsat pixels in the cell.

Using the measures of snow fraction within 500-m cells

as provided by Landsat, statistical linear relationships be-

tween the NDSI from MODIS observations and the true

fraction of snow-cover from Landsat at 500-meter resolution

were derived for three areas described above. A MODIS

land/water mask was employed to exclude lakes, etc., from

consideration to improve the statistical relationship between

NDSI and true snow fraction. An ordinary least-squares

regression approach was used to derive linear relationships

between snow fraction (FRA) and NDSI corresponding to

the 500-m grid cells.

Scatter plots of values for FRA versus the MODIS

estimates of NDSI were examined for each of the three

regions used in the study. Two different ‘‘models’’/linear

regressions were examined; namely, ‘‘model MA’’ expressed

as FRA= a1 + b1*NDSI minimizing FRA deviations and

‘‘model MB’’ where NDSI = a2 + b2*FRA minimizes NDSI

deviations. Examining the two relationships is relevant be-

cause it involves what is often termed the ‘‘errors-in-varia-

bles’’ problem (see Fuller, 1987; Lyon, 1970) and at least one

other factor. Firstly, the fraction of snow-covered area (FRA)



Fig. 3. Approximate location of Landsat scenes on companion MODIS

scenes. Landsat andMODIS data were registered on a UTM grid. (a) Alaska,

USA; (b) Siberia, Russia; (c) Labrador, Canada.

Fig. 2. Snow cover as imaged in Landsat scenes (see Table 1) used in provi-

ding ground-truth for the fractional snow-cover estimates from MODIS. (a)

Alaska, USA; (b) Siberia, Russia; (c) Labrador, Canada.
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derived from Landsat observations is better determined than

the MODIS NDSI that has errors (as will be discussed later)

related to variations in the reflectances used in the NDSI

relationship caused by solar illumination and sensor view

angles, snow grain size variability, and atmospheric effects.

Given that situation, FRA nominally serves better as the

independent variable and NDSI as the dependent variable.

Secondly, a FRA on NDSI ordinary least squares (OLS)

analysis minimizes the variance of FRA relative to the

regression line extending for values of FRA above 1.0 and

below 0.0 while an OLS analysis of NDSI on FRA inherently
constrains the minimizing of NDSI variance over a range of

FRA between 0.0 and 1.0. Based on these two factors, theMB

model is more relevant except for the fact that the aim of the

research being reported here is to estimate the FRA from the

NDSI. To do that requires algebraically inverting the MB

regression relationship to predict FRA from observed NDSI.

This procedure is not unheard of (see Draper & Smith, 1981)

and has been justified herein based on the factors just

described. The model MB relationship gives a better visual

fit to the data (see Fig. 4), and further tests to be described

later show consistently better performance relative to the MA

model as measured by mean absolute and rms error. A final



Fig. 4. Scatter plots of NDSI versus Fractional Snow cover (FRA) for the

three test areas. The thin line is for relationship MA1. The thick line is for

relationship MB3. (a) Alaska; (b) Siberia, Russia; (c) Labrador, Canada.

Table 2

Regression relationships developed for each of the three test regions

Subsets of pixels Regions Snow fraction

(FRA) versus

NDSI (model

MA)

Snow fraction

(FRA) versus

NDSI (model

MB)

All pixels (criteria 1)

n= 123,549 Alaska 0.17 + 0.99*
NDSI

0.14 + 1.05*
NDSI

n= 132,074 Russia 0.24 + 0.98*
NDSI

0.20 + 1.09*
NDSI

n= 83,379 Labrador 0.17 + 1.00*
NDSI

0.11 + 1.11*
NDSI

Pixels with snow (criteria 2)

n= 108,108 Alaska 0.14 + 1.03*
NDSI

0.05 + 1.16*
NDSI

n= 108,376 Russia 0.17 + 1.08*
NDSI

0.09 + 1.25*
NDSI

n= 76,814 Labrador 0.17 + 1.00* 0.11 + 1.11*
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consideration in favor of the MBmodel was the steeper slope

of the regression relationship providing more sensitivity of

FRA to NDSI.

The performance of the models was examined when

different criteria were employed in developing regression

relationships. These different criteria were: (1) all the gridded

MODIS NDSI values within the ground truth Landsat scenes

were used whether the grid had any snow in it or not, (2) only

grids with some snow (>0.0) were used, and (3) same as ‘2’,

but only for grids where the percentage of snow was >0.1.

Table 2 lists the regression relationships for each of these

conditions and Fig. 4 illustrates the relationships for the

extremes in the conditions examined; i.e., model MA with

criterion 1 (MA1) and model MB using criterion 3 (MB3).
 NDSI NDSI

Pixels with FRA>0.1 (criteria 3)

n= 101,747 Alaska 0.19 + 0.97*
NDSI

0.00 + 1.22*
NDSI

n= 95,866 Russia 0.22 + 1.03*
NDSI

0.06 + 1.28*
NDSI

n= 66,398 Labrador 0.22 + 0.95*
NDSI

0.11 + 1.12*
NDSI

The number (n) of 500-m grid cells used to develop the regressions are

shown for each area and criteria.
4. Results

4.1. Tests of the models

As noted in the previous section examinations of the

scatter plots, measures of error, and the relationships
depicted indicate that the model MB3 performed best.

The advantage of criterion 3 was simply that it eliminates

the influence of non-snow-covered areas and situations

where very little snow was observed. Once the MB3

model was selected, it was applied to all the data; i.e.,

there was no pre-screening of the observations for no snow

or less than 0.1 snow fraction.

To test the stability and robustness of the MB3

model, two approaches were used. In one approach,

the average relationship for two of the areas was

obtained and then tested on the third area. For example,

the averaged MB3 relationship for Siberia (S)

[FRA = 0 .06 + 1 . 28*NDSI ] and Lab r ado r (L )

[FRA= 0.11 + 1.12*NDSI] was obtained (S +L) [FRA=

0.08 + 1.20*NDSI] and tested on Alaska, etc. These

results are shown in Table 3. In all of these instances,

the relationships hold up quite well. Note, in particular,

that the mean absolute error for the MB3 model

(applied to all observations) produced a mean absolute

error consistently well below 0.1 and a standard devi-

ation very near to 0.1. This level of error includes

effects due to variations in snow grain size, variability

in the anisotropy of reflectance of snow and the effects

of the atmosphere influencing the top-of-the-atmosphere

reflectances used in the NDSI. In later paragraphs, an

analysis of error was performed to assess the contribu-

tion of these factors and a comparison made to the

mean absolute error and standard error levels shown in

Tables 3 and 4.



Table 3

Results showing the performance of the average relationship for Siberia and

Labrador tested on Alaska, the average of Alaska and Siberia tested on

Labrador, and the average relationship for Alaska and Labrador tested on

Siberia

Region Mean

snow

cover

Version of

model

Mean

absolute

error

rms

error

Correlation

coefficient

Alaska, 0.73 R+L 0.04 0.09 0.98

n= 123,549 Alaska UB3 0.03 0.08 0.98

Russia, 0.56 A+L 0.08 0.13 0.97

n= 132,074 Russia UB3 0.06 0.11 0.97

Labrador, 0.64 A+R 0.06 0.11 0.96

n= 83,379 Labrador UB3 0.06 0.11 0.97

Fig. 5. Square boxes indicate the location of test areas coincident with

Landsat scenes in the North Slope of Alaska over the Kuparuk River Basin

and in the Andes of Chile/Argentina used to test MB3 relationship for

estimating fractional snow-cover area (FRA). (a) Alaska; (b) Chile/

Argentina.
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Another approach was to take the averaged MB3 result

for all three areas and consider it to be the ‘‘universal’’

approach (MB3U). This relationship is:

FRA ¼ 0:06þ 1:21*NDSI: ð2Þ

This MB3U relationship was then tested on two totally

different areas; i.e., an independent/‘‘blind’’ test was done.

The new areas selected were (a) a mountainous region in the

southern Andes of South America with an accompanying

Landsat scene to provide the ground-truth and (b) a scene on

the North Slope of Alaska covering the Kuparuk River Basin

also having an accompanying Landsat scene. The locations

of these two areas are shown in Fig. 5. At the same time, the

performance of the fractional snow-cover algorithm devel-

oped in this paper was compared to the Kaufman et al.

(2002) and Barton et al. (2001) methods. The Kaufman et al.

relationship is:

FRA ¼ ðqc
0:66 � 0:5q2:1Þ=qsnow

0:66 ; ð3Þ

where q0.66
c is the corrected surface reflectance at 0.66 Am,

q2.1 is the reflectance at 2.1 Am, and qsnow
0.66 is the reflectance

of snow assumed to be equal to 0.6F 0.1.
Table 4

Results showing the various statistical comparisons between the best rela-

tionship developed in this paper (MB3U) and the relationships developed by

Barton and Kaufman over areas independent where original relationships

were developed

Region Method Mean

snow

cover

Mean

absolute

error

rms

error

Correlation

coefficient

Kuparuk, Barton 0.33 0.14 0.19 0.93

n= 120,141 Kaufman 0.36 0.11 0.15 0.93

MB3U 0.41 0.08 0.12 0.95

South America, Barton 0.18 0.10 0.13 0.95

n= 135,234 Kaufman 0.22 0.07 0.10 0.96

MB3U 0.21 0.04 0.10 0.97

The number of points involved in the testing of the MB3U is listed in the

table.
The Barton et al. relationship is:

FRA ¼ 0:18þ 0:37NDSIþ 0:26ðNDSIÞ2 þ . . . . . . ð4Þ

Both Kaufman and Barton relationships were developed on

a portion of the southern Sierra Nevada Mountains in the

Southwestern United States. As such the tests of these

relationships over the Andes and the Kuparuk river basin

were also independent tests of these algorithms.

The results of the Andes and Kuparuk River basin test are

shown in Fig. 6 and Table 4. In all cases, concurrent Landsat

scenes were used to provide the ground truth for snow

fraction (FRA) as described in Section 2 of this paper. In

Table 4, it can be seen that MB3U relationship produced

statistics that were generally better than the other two

methods with the mean absolute error in particular showing

some better performance.

To further evaluate the utility of the algorithm developed

here, it was applied to a map of fractional snow cover over a

large region covering most of the western United States. The

results are compared to fractional snow-cover maps calcu-

lated using the Kaufman method and the Barton method as

well as nearly concurrent maps of snow cover provided by



Fig. 6. Regression lines for the calculated snow fraction (FRA) and the true

snow fraction determined from Landsat approach (see Methods). The thick

solid line is the result for MB3U, the line with the longer dashes is for the

Barton method, and the line with the shorter dashes is for the Kaufman

method. (a) Kuparuk River area; (b) South America Andes.
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the NOHRSC (National Operational Hydrologic Remote

Sensing Center)—see Carroll, 1995). These comparisons

are shown in Fig. 7. These images show again that relative

to the algorithm emphasized herein (MB3U), the Kaufman

and Barton methods tend to overestimate snow-cover frac-

tion at the low values (see small snow fractions over large

regions where snow is not present) and underestimate snow

cover where there is 100% or nearly 100% snow cover as,

for example, should be expected at the top of mountain

ranges.

4.2. Error analysis

As another examination of the performance of the

MB3U algorithm, a rough error analysis was performed.

One issue is the variability in the NDSI and subsequent

estimates of FRA due to variability in snow grain size.

Other factors were errors due to variability in the sensor

view angle and the solar illumination of the snow (solar

zenith angle) due to the anisotropy of snow reflectance.

The fourth factor considered was the variability in the

results for FRA and NDSI due to the effects of the ‘‘clear

sky’’/non-cloudy atmosphere on the top-of-the-atmosphere

reflectances used in the NDSI For this analysis, results in

the refereed literature were used to obtain a range in

NDSI and FRA due to varying snow grain size, view or

solar illumination angle, and atmospheric condition. Once

having obtained the range, it was assumed that this was
an approximation of F 3r. From that approximation and

the companion assumption that the errors were normally

distributed, the standard deviation, r, was computed for

each of the factors considered. Then the root-mean-square

(rms) of the four factors listed above was computed to

give an estimate of total error that could then be com-

pared to the regression mean absolute and standard error

estimates.

In the case of the error due to snow grain size,

Wiscombe and Warren (1980) observed that new snow

has a 50-Am grain size, fine-grained older snow has a

200-Am grain size and old snow has a 1000-Am grain

size. These grain sizes were used to approximate the F 3r
is NSDI and FRA. In Wiscombe and Warren, graphs

(their Fig. 8) of variability in albedo versus grain size are

provided. Using this graph, albedo values for 0.55 Am
(i.e., band 4 of MODIS) and 1.64 Am (band 6 of

MODIS) were obtained for 50- and 1000-Am grain sizes

and NDSI computed. These then were used in MB3U to

obtain FRA. The end result was a standard deviation (r)
of 0.07. Other graphs of albedo versus grain size for

different grain sizes were also examined; e.g., Aoki,

Fukabori, and Uchiyama (1999) with similar, but usually

somewhat smaller standard deviation results. To be con-

servative in the estimate of total rms error, the r = 0.07

was retained.

As another way of examining the effect of grain size,

MODIS observations of the megadunes in East Antarctica

were analyzed (Fahnestock et al., 2000; Frezzotti et al.,

2002). This is an area that is clearly 100% covered by snow

and, although as yet not specifically characterized, some

significant variability in grain size exists albeit the grain

sizes are relatively large (f 1 cm, see, http://nsidc.org/

antarctica/megadune/dunes.html. ‘‘Megadunes: How the

Dunes Were Formed). The dunes are spaced 2–5 km apart

and have amplitudes of 2–4 m (Frezzotti, Gandolfi, &

Urbini, 2002).

The NDSI was computed for MODIS 500-m pixels over

the megadune area. The NDSI mean was 0.8 and the

standard deviation of the observations was 0.02. This trans-

lates into a FRA of 1.0 and a standard deviation of 0.024.

The standard deviation is somewhat lower than expected, but

that is possibly due to the impact of variable grain size

becoming increasingly limited at large grain sizes, the

relative transparency of the atmosphere and uniformity of

the terrain in this area. In any case, these observations do not

suggest as much uncertainty in the FRA estimation due to

grain size as the calculations in the previous corresponding

paragraph indicate.

For the solar zenith angle factor, we utilized the results

from Wiscombe and Warren (1980—Fig. 11a) over a range

of solar zenith angles of 0–80j. Again it was assumed that

this would provide an approximation of the F 3r. The result
was a standard deviation for FRA of 0.05. Although it is a

rough (but conservative) estimate, we assumed the same

standard deviation for sensor view angle—basically reflect-

 http:\\www.nsidc.org\antarctica\megadune\dunes.html 


Fig. 7. Maps of snow cover over a large section of the western United States. The area covered in (b–d) is shown in the red box of panel a. Panel a is from the

National Operational Hydrologic Remote Sensing Center (NOHRSC). Panel b shows fractional snow cover with the model MB3U developed in this paper.

Panel c shows fractional snow cover as mapped by the Barton et al. (2001) algorithm. Panel d shows fractional snow cover as mapped by the Kaufman et al.

(2002) algorithm. The yellow areas are those regions covered by clouds. The green areas, particularly in the lower left of (c) and (d), indicate erroneous

estimates of low snow cover and the pink tones in (c) and (d) (see, for example, the fractional snow cover over the Uinta mountains in the center of the images)

show the underestimate of snow cover by Kaufman and Barton techniques. In essence, the MB3U approach indicates more capability for capturing the total

range in fractional snow cover.
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ing the error associated with the anisotropy in the reflectance

of snow.

For the atmospheric effect, we utilized the results in the

work of Aoki et al. (1999—Fig. 10a) for an atmosphere with

optical depth ranging from s = 0.02–0.3. The result was a

standard deviation for FRA of 0.02.

Taking the square root of the sum of squares for all these

factors (grain size, solar zenith angle, viewing angle, and

atmospheric effect) the result was [(0.07)2+(0.05)2+

(0.05)2+(0.02)2]1/2=[0.0049 + 0.0025 + 0.0025 + 0.0004]1/2=

[0.0103]1/2 = 0.10. This result corresponds closely to the rms

and mean absolute error results already stated from the

regression results.
5. Discussion

The results described above indicate that the fractional

snow-cover algorithm discussed herein offers some improve-

ments relative to other published fractional snow-cover

algorithms published by Kaufman et al., and Barton et al.

In the case of the Kaufman and Barton approaches versus the

MB3 universal algorithm (MB3U) determined in this study,

the MB3U approach generally does a better job of estimating

snowfractions particularly at or near extremes; i.e., low snow

fractions and high snow fractions while equaling or exceed-

ing performance of these two methods in the mean as

expressed by mean absolute error, rms error and correlations
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coefficients. The results show that the mean absolute error for

MB3U in independent tests (see Tables 3 and 4) stays at or

below 0.10 and gives less rms error (Table 4). Overall, the

MB3U approach appears to do a good job over a wide range

of conditions while maintaining relative computational sim-

plicity roughly equivalent to that of the existing SNOWMAP

algorithm.

On the other hand, it should be noted that the approaches

developed and applied here (e.g., MB3U) only give the

fraction of snow that was observable in the MODIS pixel.

That means, in particular, this algorithm makes no attempt to

estimate snow beneath vegetation canopies such as those in

forested areas as does the SNOWMAP approach (see Klein et

al., 1998). As such the MB3Umodel is most useful in studies

emphasizing the observing of fractional snow cover for its

relationship to albedo and radiation balance research. It has

limited utility for estimating snow cover in heavily forested

areas and relating it to snowmelt runoff.

In addition, this study used radiances observed at the top

of the atmosphere leading to the reflectances used in the

NDSI. Studies are continuing to see if surface reflectances

derived from MODIS observations and corrected for atmo-

spheric effects (Vermote, El Saleous, & Justice, 2002) can

improve upon the results. Furthermore, there may also be

advantages yet undemonstrated or applied for MODIS

observations to correct for viewing angle or bi-directional

properties of snow in particular and other materials (see

Schaaf et al., 2002) within a pixel and for topographic

effects. Lastly, it is expected that this approach could be

adjusted or ‘‘tuned’’ for specific areas such as watersheds or

regions and subsequently increase the accuracy of the

fractional snow-cover estimates.
6. Summary and conclusions

The normalized difference snow index (NDSI) has been

examined to see if it provides sufficient ‘‘signal’’ to be useful

in estimating fractional snow cover within a MODIS 500-m

pixel. A globally applicable, linear statistical relationship has

been developed using regions in Alaska, Canada and Russia.

Tests in independent areas show that the relationship appears

to be quite robust and stable. Comparisons are made to two

other subpixel snow-cover algorithms applied to MODIS

data showing that the fractional snow-cover relationship

developed here provides better estimates especially for

relatively low snow cover and high snow-cover conditions.

The fraction of snow cover within a MODIS pixel can be

provided with a mean absolute error of less than 0.1 over the

entire range of 0.0–1.0.
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